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Abstract. An exact analysis is presented for the configurationally averaged two-body Green
function of a random tight-binding model characterized by topological (e.g. positional) disorder.
A general consistency relation is found between one-body and two-body Green functions, thus
providing a unique and consistent way of extracting the contribution of the two-body function
to the conductivity, whenever the averaged one-body Green function is available from a given
approximate theory. In the effective-medium approximation the conductivity problem reduces to
the sum of a ladder series for the two-body function, or alternatively to the solution of a simple
one-dimensional integral equation. For illustration some numerical calculations are reported for
the random hard-sphere approximation: a comparison with other single-site calculations clearly
shows the important role played by a proper inclusion of the structural properties and by the
internal consistency of the theory.

1. Introduction

During recent years a new interest has emerged in developing self-consistent tight-binding
schemes for the densities of states (DOSs) of liquid metals [1–8]. Such theories are quite
general and may be extended to any system characterized by quenched liquid-like disorder
such as alloys and doped semiconductors. The first attempt to extract some transport
properties from a tight-binding model came from the pioneering work of Matsubara and
Toyozawa [9] (MT) on the conductivity of impurity band semiconductors. That calculation
provided the basis for several theories which have been proposed [10] for evaluating
electronic or transport properties of a topologically (e.g. positionally) disordered system.

Recently, Logan and Winn [4] developed an exact diagrammatic description of the
averaged Green functions, in analogy to liquid-state graph methods, thus showing [6] the
equivalence between the effective-medium approximation (EMA) of Roth [11–14] and the
single-superchain approximation (SSCA) proposed by Wertheim [15] in the context of
classical dielectric theory. Moreover they have shown that, for a simple choice of the
pair distribution function, the EMA is equivalent to the mean-spherical approximation of
liquid-state theory for the pair distribution function of a classical liquid [16]. Analytical
solutions of this problem are available, and may be extended to the electronic context, thus
giving rise to new analytically tractable approaches to the study of DOSs and transport in
the presence of topological disorder.

In this context it would be desirable to develop an analytically tractable theory for the
conductivity, starting from the averaged two-body Green function which would be required
together with the one-body function. It is generally believed [6] that in the limit of weak
disorder (the Boltzmann regime) the two-body Green function could be approximated by
a product of two one-body functions, thus breaking the average. However, on proceeding
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in such a manner one finds that the resulting two-body function is not consistent with the
approximations adopted in evaluating the one-body function [17, 18].

In this paper, in the framework of the exact diagrammatic description developed by
Logan and Winn [4], we show the existence of a general consistency relation between
two-body and one-body averaged Green functions. Such a relation provides a unique
and consistent way of extracting the contribution of the two-body function to the DC
conductivity, if the one-body function is available from a given approximate theory. In
the low-density limit this method could be the starting point for a consistent evaluation of
the conductivity in the context of some non-single-site theory, while in the high-density
regime it could be employed for a systematic and consistent study of the conductivity in
the framework of single-site theories. To our knowledge the best of these theories is the
EMA which is believed [8, 17] to be the most natural extension of the coherent-potential
approximation for diagonal (e.g. substitutional) disorder to the case of topological disorder.
At the SSCA/EMA level our conductivity problem is reduced to the solution of a simple one-
dimensional integral equation, and the formal result of Itohet al [18] is recovered. As shown
by Winn and Logan [6], for some simple choice of the pair distribution function, the analogy
with the mean-spherical approximation of liquid-state theory may be employed in order to
obtain an analytically tractable theory, and for illustration some numerical calculations are
presented in the random-hard-sphere approximation.

Section 2 is devoted to a general survey of the perturbative expansions for the averaged
one-body and two-body Green functions in the presence of topological disorder. The static
conductivity is written in terms of an averaged two-body function whose exact expansion
is discussed together with the general topological reduction and renormalization of the
contributing diagrams. In section 3 a general proof is given for the topological equivalence
of the diagrams contributing to the one-body and two-body functions, thus recovering a
general consistency relation between such functions. For illustration, the method is shown
to yield analytically tractable theories for the conductivity in the opposite limits of low
and high density. In the low-density regime the conductivity problem is addressed in the
simple Elyutin model [19], which provides an interesting example of an analytical non-
single-site approximation. Then, in the high-density regime, single-site theories are taken
into consideration. In section 4 the conductivity problem is developed at the SSCA/EMA
level, giving rise to a ladder expansion for the two-body function. Finally in section 5 some
numerical results are presented in the random-hard-sphere approximation, and are compared
to other single-site calculations.

2. Topological disorder: averages and perturbative expansions

In order to describe the electronic properties, a disordered system is commonly represented
by a random ensemble ofN localized Wannier states filled withNe electrons. The filling
fraction y = Ne/N may differ from unity in the presence of doping. Transport is allowed
via a non-zero matrix element of the Hamiltonian connecting different states. Ignoring
the presence of spin and of any interaction among the electrons we can write the simple
one-particle tight-binding Hamiltonian as

Ĥ =
∑
i 6=j

VijC
+
i Cj (1)

whereCi , C+
i are annihilation and creation operators for an electron on the local sitei,

with a centre-of-mass positionRi , and the sums run over theN sites. The transfer-matrix
elementVij = V (Ri , Rj ) is supposed to depend only on the coordinates of the sitesi, j .
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For any given configuration the Green function is defined by

Gij (z) = 〈0|Ci

1

z − Ĥ
C+

j |0〉 (2)

where|0〉 is the vacuum andz is a complex variable.Gij satisfies the equation of motion

zGij (z) = δij +
∑
k 6=i

VikGkj (z) (3)

which may be expanded to give the locator series.
Diagonal and off-diagonal configurational averages are defined by

G(z) = 〈Gii(z)〉 (4a)

G(z, R − R′) = 1

ρ2

〈∑
i 6=j

Gij (z) δ3(Ri − R) δ3(Rj − R′)

〉
(4b)

whereρ is the density of sites. Performing an averaging of equation (3) we find

zG(z) = 1 + ρ

∫
d3R′ G(z, R − R′)V (R′ − R). (5)

An exact analysis of the averaged one-body Green functions has been developed by
Logan and Winn [4] starting from equations (4) and (5), and using the methods of liquid-
state graph theory.

The averaged Green functionG(z) satisfies the exact relations

zG(z) = 1 + ρ[G(z)]2
∫

d(2) H(1, 2)V (2, 1) (6)

H(1, 2) = C(1, 2) + ρG(z)

∫
d(3) H(1, 3)C(3, 2) (7)

wherei = 1, 2, . . . is shorthand forRi , and d(i) ≡ d3Ri . The functionH(1, 2) is related
to the averaged off-diagonal Green function

G(z, 12) = G(z)H(1, 2)G(z). (8)

H(1, 2) and C(1, 2) have a diagrammatical representation in terms ofs-site diagrams
consisting of a path ofVij bonds connecting thes sites from 1 to 2, with additional
connectors coming from thes-particle structural distribution functionsgs(1, 2, . . . , s). The
number of stages associated with each path may be larger thans since the path can touch
any site several times. The perturbative expansion ofH(1, 2) is basically a renormalized
version of the locator expansion of equation (3).H(1, 2) is the sum of all of the diagrams
with end sites labelled 1 and 2, a factorρ for each internal site, a factorG(z) for each
internal stage, and no one-articulation points. Equation (7) relatesH(1, 2) to the irreducible
part C(1, 2) which is the sum of all of the diagrams that lack both one-articulation and
one-chain bridge points. All of the centre-of-mass position vectorsRi for the internal sites
are integrated over. The topological reduction of diagrams is illustrated in figure 1.

Both H(1, 2) and C(1, 2) are functions ofz, the dependence being implicit in the
G(z)-dependence. Equation (7), which is exact, has been referred to as the analogous
Ornstein–Zernike (OZ) equation [4].

A self-energy is defined as

S(z) = ρG(z)

∫
d(2) H(1, 2)V (2, 1) (9)
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Figure 1. Topological reductions of one-body diagrams. The hatched areas represent the sums
of all of the unrenormalized diagrams with the same fixed end points 1, 2 (the second row)
or with coincident end points (the third row). All one-articulated parts may be eliminated by
multiplying by zG(z) at each stage, thus substitutingG(z) for 1/z as shown in the fourth row.
The filled regions in the fifth and sixth rows represent the sums of all of the renormalized
diagrams (=free of one-articulation points).

and from equation (6) the diagonal Green function reads

G(z) = 1

z − S(z)
. (10)

The OZ equation can be solved only if a closure relation is available, and in practice
some approximation must be invoked in order to get a closed expression for such a relation.

The problem of calculating the static conductivity for a topologically disordered
assembly of local electronic states has been studied by several authors [9, 17, 18, 20], making
use of different kinds of approximation. Our central interest is in the static conductivity
tensor which reads according to Kubo [21]

σ = lim
s→0+

∫ ∞

0
dt

∫ β

0
dλ e−st 〈J(−i h̄λ) · J(t)〉 (11)

where J is the current density vector andβ = 1/KBT . The current–current averaged
correlation function can be written in terms of Green functions yielding [9]

σ = −πe2

h̄

〈∑
i 6=j

∑
k 6=l

∫
dE Rij · RklVijVkldli(E)djk(E)

(
− df (E)

dE

)〉
(12)

wheref (E) is the Fermi distribution,Rij = Ri −Rj anddij (E) = −(1/π) Im Gij (E+ i0).
For a random distribution of the sites, the conductivity tensor should be isotropic; taking

into account the spin degeneracy the scalar conductivity reads

σ = 2πe2

3h̄

∫
dE M(E)

(
− df (E)

dE

)
(13)
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Figure 2. Topological reductions of two-body diagrams. In the first row the overlapping hatched
areas represent the sums of all of the unrenormalized diagrams contributing toG(12, 34). The
overlap may be due to the intersection of the paths on some common site or, even when the
paths are disconnected, to the structural connectors between the sites. As shown in the second
row, the same renormalization procedure as was adopted for the one-body function allows one
to eliminate the one-articulated parts with the only exception of overlapping one-articulated
parts whose articulation point belongs to both of the paths. In the third row, the overlapping
filled areas represent the renormalized diagrams. These are free of one-articulation points with
the only exception of the intersection points between the paths. The subclass of renormalized
diagrams with at least a bridge point is shown in the fourth row.

where

M(E) = 1

2π2
Re

[
A(E+, E+) − A(E+, E−)

]
E± = E ± i0 (14)

with

A(z, z′) =
〈∑

i 6=j

∑
k 6=l

(
Wij · Wkl

)
G

(2)
jk,li (z, z

′)

〉
(15)

and with the notationWij = RijVij . Here G
(2)
ij,kl(z, z

′) = Gij (z)Gkl(z
′) is the two-body

function which factorizes in the present single-particle description.
The averaged two-body function is introduced in analogy to the one-body case (4):

G(2)(z, 12; z′, 34)

= 1

ρ4

〈∑
ij

∑
kl

Gjk(z)Gli(z
′)

× δ3(Rj − R1) δ3(Rk − R2) δ3(Rl − R3) δ3(Ri − R4)

〉
. (16)
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This definition incorporates both diagonal and off-diagonal parts since no restrictions
are imposed to the indices. Equation (15) now reads

A(z, z′) = ρ4
∫

d(1) d(2) d(3) d(4) G(2)(z, 12; z′, 34) (W (4, 1) · W (2, 3)) (17)

with the obvious notationW (1, 2) = V (1, 2)R12. Notice that the restriction on indices
in equation (15) requires the constraints 16= 4 and 2 6= 3 for the integration variables
of equation (17). However, the formal elimination of a single point from the integration
domain has no practical relevance unless the two-body function had a singular behaviour

G(2)(12, 34) ∼ regular part+ δ3(R1 − R4).

This is indeed the case, since from equation (16) fori = j a contribution arises that is
proportional to a delta function. Such a contribution must be omitted in order to reproduce
equation (15) with the proper restrictions on indices. This basically means that the two-body
function G(2)(12, 34) in equation (17) must be simply evaluated for 16= 4 and 26= 3.

An exact expansion of the averaged two-body Green function follows from
equation (16) in analogy to the one-body expansion previously discussed. Thus substituting
G(2)(z, 12; z′, 34) for G(z, 12) in the exact analysis of Logan and Winn [4], and retaining
almost all of the details unchanged, we are able to represent the two-body function in terms
of double-chain diagrams. In fact the only relevant difference arises from the presence of
two one-body Green functions inside the average in equation (16), so the product of the
respective locator expansions gives rise to diagrams connected by two different chains of
Vij -bonds. The generics-site diagram contributing toG(2)(z, 12; z′, 34) has four end points
labelled 1, 2, 3 and 4; it consists of two paths ofV (ij)-connectors through thes sites and
respectively from 1 to 2 and from 3 to 4. Additional connectors come from thes-particle
structural distribution functiongs(1, 2, . . . , s).

Even the topological reduction of the diagrams remains almost unchanged in passing
from the one-body to the two-body analysis, thus allowing for the elimination of all of
the one-articulated parts (as shown in figure 2) with the only exception of overlapping
one-articulated parts whose articulation point belongs to both the paths. That is, the sum
of all of the possible decorating one-articulated parts amounts tozG(z) at each stage.
Thus any renormalized diagram is free of one-articulation points (with the above-mentioned
exception of the intersection points between the paths), and the factorsG(z), G(z′) are
associated respectively with each stage of the first and of the second path. A factorρ is
then associated with any internal site, and all of the internal coordinates are integrated over.

In order to evaluate the conductivity we may neglect a class of diagrams whose
contribution to the integral in equation (17) is exactly zero. In fact the diagrams for
G(2)(12, 34) containing at least a bridge point are even with respect to the inversion of
the end-point coordinates 1↔ 4 or 2 ↔ 3. (By bridge point we mean a point where
the diagram may be cut into two pieces, one containing the end points 1, 4, and the other
containing the end points 2, 3.) Since the vectorsW are obviously odd with respect to the
interchange of their extremities, we may neglect the whole class of diagrams containing such
bridge points. We will denote bȳG(2) the relevant part ofG(2), i.e. the part contributing to
the conductivity, given by the sum of all of the renormalized diagrams which are free of
bridge points, with 16= 4 and 26= 3.

3. Exact consistency relations and the variational approach

In this section we show the existence of a topological equivalence between the class of
diagrams contributing to the two-body functionG(2) and the class of diagrams contributing
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to the one-body functionG(z, 12). For any diagram contributing to the two-body function
G(2)(z, 12; z, 34) we obtain a diagram for the one-body functionG(z, 14) by just connecting
together the end points 2, 3 with aV (2, 3)-factor and integrating over the corresponding
position vectors. Conversely by deleting aV (i, j)-connector in a diagram forG(z, 14)
we obtain a diagram forG(2)(z, 1i; z, j4). Moreover all of the double-path diagrams
contributing to the two-body function are obtained by deleting aV (i, j)-connector in
any possible position from the diagrams contributing to the one-body function. A similar
topological equivalence was first employed by Itohet al [18] at the EMA level. However,
we observe that such correspondence is completely general and follows from the exact
expansions of the Green functions discussed above. In other words we have a consistent
prescription for extending all of the approximations adopted in the description of the
structural properties from the one-body to the two-body function.

The topological equivalence gives rise to an exact consistency relation which is of
general validity. In order to prove it, we start by generalizing the definition (2) for the
Green function in an operatorial notation:

(z − Ĥ )Ĝ = Î . (18)

For the following discussionĤ is any Hamiltonian, and the matrix elements

Hij = 〈i|Ĥ |j〉 (19)

are taken between an arbitrary basis set of states{|i〉}. Differentiating equation (18) with
respect toHkl we obtain

− ∂Ĥ

∂Hkl

Ĝ + (z − Ĥ )
∂Ĝ

∂Hkl

= 0 (20)

where in the derivative∂/∂Hkl the conjugated termHlk is kept fixed. We introduce the
operatorÔ(kl) whose matrix elements are

Ô
(kl)
ij = δikδjl =

(
∂Ĥ

∂Hkl

)
ij

(21)

and, with such notation, equation (20) reads

−Ô(kl)Ĝ + (z − Ĥ )
∂Ĝ

∂Hkl

= 0. (22)

Then, by multiplying byĜ,

∂Ĝ

∂Hkl

= ĜÔ(kl)Ĝ. (23)

This last relation can be seen as a generalized Ward identity: for the special case where
k = l ∑

k

∂Ĝ

∂Hkk

= ĜĜ. (24)

Thus, from the definition (18),

∂Ĝ

∂z
= −

∑
k

∂Ĝ

∂Hkk

(25)

which together with equation (24) gives the usual Ward identity

∂Ĝ

∂z
= −ĜĜ. (26)
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The off-diagonal contribution (k 6= l) of equation (23) in its explicit matrix representation
reads

∂Gij

∂Hkl

= GikGlj . (27)

If Ĥ does not contain any interaction term, then the right-hand side of this relation is
the two-body Green function. Equation (27) translates the above-discussed topological
equivalence between the diagrams contributing to one-body and two-body functions, since
in the representation of the local sitesHkl = V (k, l). We notice that in the derivative the
conjugated termV (l, k) is kept fixed; otherwise the inverted termGilGkj must be added to
the right-hand side of equation (27).

Regarding the off-diagonal matrix element as a two-point function

V (k, l) = V (Rk, Rl) (28)

we are allowed to write for a generic functionalF [V ]

δF [V (R1, R2)]

δV (S1, S2)

= lim
ε→0

F [V (R1, R2) + ε δ3(R1 − S1) δ3(R2 − S2)] − F [V (R1, R2)]

ε
(29)

and

δV (k, l)

δV (i, j)
= δ3(ik) δ3(j l). (30)

Provided that the one-body averaged Green function (4b) is known as a functionalG(1, 2; V )

of the generic off-diagonal matrix element of the Hamiltonian, the functional derivative
follows:

δG(1, 2; V )

δV (3, 4)
= 1

ρ2

〈∑
i 6=j

δGij (z)

δV (3, 4)
δ3(1i) δ3(2j)

〉
(31)

where we have made use of the fact that the functionV (3, 4) does not depend on the chosen
configuration. The functional derivative ofGij is

δGij (z)

δV (3, 4)
=

∑
k 6=l

∂Gij (z)

∂Hkl

δV (k, l)

δV (3, 4)
(32)

where of course in the derivative∂/∂Hkl the conjugated termHlk is kept fixed since the
indicesk, l are summed over. Inserting equation (32) and (30) in equation (31):

δG(1, 2; V )

δV (3, 4)
= 1

ρ2

〈∑
i 6=j

∑
k 6=l

(
∂Gij (z)

∂Hkl

)
δ3(1i) δ3(2j) δ3(3k) δ3(4l)

〉
. (33)

Then finally, making use of the off-diagonal identity (27) and of the definition (16), we
obtain for 36= 4 and 16= 2

δG(1, 2; V )

δV (3, 4)
= ρ2G(2)(1, 3; 4, 2) (34)

which is an exact consistency relation for consistency between one-body and two-body
functions. However, we must notice that such a functional derivative is not easily evaluated
in general. In fact, in the most common case,V (i, j) = V (Ri − Rj ) andG(i, j) is known
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as a functional ofV (R) = V (−R) ≡ V ∗(R). Then the functional derivative with respect
to V contains two contributions:

δG

δV
=

(
δG

δV

)
V ∗

+
(

δG

δV ∗

)
V

= ρ2
[
G(2)(12, 34) + G(2)(13, 24)

]
(35)

and the symmetrized two-body Green function on the right-hand side does not play any role
in the conductivity problem, where the antisymmetrized part is relevant.

Figure 3. The variational derivative with respect toV of a one-body diagram is obtained by
deleting aV -connector in any possible position, thus yielding a double-path diagram. If the
deletedV -connector were inside a one-articulated part then the diagram arising would have at
least a bridge point in the articulation point. The figure illustrates such a correspondence in the
simple case of a chain diagram.

Going back to the conductivity problem, the consistency relation (34) simplifies when
dealing with the relevant part̄G(2) of the two-body function. In fact, inserting equation (8),
the relation (34) reads

ρ2Ḡ(2)(z, 12; z, 34) = [G(z)]2 δH(1, 4)

δV (2, 3)
(36)

since any variational derivative ofG(z) adds diagrams which contain at least one bridge
point, and as previously discussed this class of diagrams does not contribute to the
conductivity for symmetry reasons. In order to prove such an assertion we observe that the
off-diagonal one-body functionG(z, 12) depends onz implicitly through the functionG(z),
since a factorzG(z) has been added at some stage of the renormalized diagrams to take
into account all of the decorating one-articulated parts. Taking the variational derivative of
the factorzG(z) with respect toV is equivalent to opening the single path of any one-body
diagram inside a one-articulated part. The double-path diagram which arises has a bridge
point in the one-articulation point of the corresponding one-body diagram, as illustrated in
figure 3. Thus we may neglect the functional dependence ofG(z) on V in the functional
derivative ofG(z, 12), when we are interested in the relevant partḠ(2) of the two-body
function.

Equation (36) is very general since no special assumptions or approximations have been
employed in its derivation. Such a variational consistency relation is all we need in order to
address the conductivity problem through equation (17), provided that the one-body Green
function is available as a functional of the off-diagonal matrix elementV .

In order to illustrate the method, we show that an analytically tractable theory emerges
in both of the opposite limits of high and low density, starting from corresponding
approximations for the one-body Green function: respectively, single-site theories at high
density and the Elyutin (see [19, 4]) expansion at low density.
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Figure 4. Two-site diagrams contributing to the one-body functionH(1, 2) in the Elyutin
approximation.

Figure 5. The off-diagonal part, equation (43), of the averaged two-body Green function
according to the conventional diagrammatic description; here the arrows represent off-diagonal
Green functions, and the crosses refer to scattering processes.

3.1. Low density

The model proposed by Elyutin (see [19, 4]), in the low-density limit, is the simplest
example of a non-single-site theory, and basically contains only the leading terms in an
expansion in powers of the densityρ. The generic renormalizeds-site diagram contributing
to the one-body Green function has a factorρs−2 since any site contributes with a factor
ρ except for at the end points of the diagram. Thus the leading term in powers ofρ is
given by the sum of all of the diagrams withs = 2. Such diagrams are shown in figure 4.
Neglecting higher powers ofρ, from equation (7)H(1, 2) ≈ C(1, 2), and the irreducible
part C(1, 2) is given by the expansion in terms of such diagrams lacking in internal sites
(s = 2):

H(1, 2) ≈ C(1, 2) = g2(1, 2) [V (1, 2) + V (1, 2)G(z)V (2, 1)G(z)V (1, 2) + · · ·] (37)

where the only structural connectorg2(1, 2) is the pair distribution function. The series is
readily summed and insertion in equation (8) yields

G(1, 2) =
[

g2(1, 2)V (1, 2)G(z)2

1 − G(z)2V (1, 2)V (2, 1)

]
. (38)
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In the present derivation the matrix elementsV (1, 2) and V (2, 1) are regarded as
independent quantities in order to evaluate the functional derivative occurring in
equation (34). As previously discussed this point is crucial if one is to obtain the correct
response function.

The self-energy, equation (9), reads

S(z) = ρ

∫
d3R12

g2(1, 2)|V (1, 2)|2
z − S(z) − |V (1, 2)|2/(z − S(z))

. (39)

This self-consistency equation is equivalent to the renormalized perturbation series for the
self-energy truncated at the second-order term [4, 22]. (Such a procedure is exact for a
Cayley tree and in fact, taking into account all of the decorating parts, all of the diagrams
retained have the topology of a Cayley tree with a connectivity ranging from 0 to∞ at any
site [4, 19].)

The variational derivative of equation (38) yields according to equation (36)

ρ2Ḡ(2)(z, 12; z.34)

= G(z)2g2(1, 4)[
1 − G(z)2|V (1, 4)|2]2 δ(12) δ(34)

+ G(z)4g2(1, 4)V (1, 4)2[
1 − G(z)2|V (1, 4)|2]2 δ(24) δ(13). (40)

The first term on the right-hand side can be seen as the product

g2(1, 4)

[
G(z)

1 − G(z)2|V (1, 4)|2 δ(12)

] [
G(z)

1 − G(z)2|V (1, 4)|2 δ(34)

]
(41)

where the terms in square brackets represent the sums of all of the two-site contributions
to the diagonal Green function:[

G(z)

1 − G(z)2|V (1, 4)|2
]

= G(z) + G(z)V (1, 4)G(z)V (4, 1)G(z) + · · · . (42)

The product of such terms in equation (41) is easily interpreted as the diagonal–diagonal
part of the averaged two-body Green function, which does not reduce to the mere product
of two diagonal-averaged Green functions in the present theory.

The second term on the right-hand side of equation (40) can be interpreted as the product
of two off-diagonal Green functions:

G(1, 2)G(3, 4)

[
δ(13) δ(24)

g2(1, 2)

]
(43)

according to equation (38), and apart from the factor in brackets which forces the extremes
to coincide and avoids a double presence of the pair distribution function. As shown in
figure 5 this term belongs to the class ofmaximally crossed[23, 24] diagrams (in the
conventional diagrammatic description) which play an important role at low density, giving
rise to a decreasing of the conductivity and eventually to a metal–insulator transition due
to the localization of states. We will show that such a term gives a negative contribution to
the total conductivity of the system.

Denoting byα andβ the diagonal and off-diagonal contributions respectively:

α(z, R) =
[

G(z)

1 − G(z)2|V (R)|2
]

(44a)

β(z, R) =
[

G(z)2|V (R)|
1 − G(z)2|V (R)|2

]
(44b)
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where we finally assumeV (1, 2) ≡ V (R1 − R2), and then inserting equation (40) in
equation (17):

A(z, z′) = ρ2
∫

d3R R2|V (R)|2g2(R)
[
β(z, R)β(z′, R) − α(z, R)α(z′, R)

]
. (45)

Then according to equations (13) and (14), atT = 0, the conductivity follows as

σ = 2e2

3πh̄
ρ2

∫
d3R R2|V (R)|2g2(R)

[(
Im α(Ef , R)

)2 − (
Im β(Ef , R)

)2
]

(46)

whereEf is the Fermi energy. This is the leading term in an expansion of the conductivity
in powers ofρ, and it incorporates the contribution of all of the two-site diagrams for
the averaged two-body Green function. As anticipated we notice the opposite sign of the
contributions due to the functionsα and β, e.g. diagonal and off-diagonal parts of the
averaged two-body Green function. In fact the diagram of figure 5 (off-diagonal) gives rise
to the product of twoβ-functions in equation (45) and thus to a negative contribution to
the conductivity in equation (46).

It is worth noticing that for the special case whereg2(R) = 1, V (R) = V0/R
3, the

solution of the self-consistency equation (39) yields [4] a constant self-energyS(E+) = iγ ,
whereγ = (2π2/3)ρV0. In such a case the integral in equation (46) can be analytically
evaluated:

σ = 2

(
2π

3

)3
e2

h̄
V

8/3
0 ρ3 sin(5θ/3)

Ef (E2
f + γ 2)5/6

(47)

whereθ = arctan(Ef /γ ). However, even more realistic approximations, for both the pair
distribution functiong2 and the Hamiltonian matrix elementV (R), may be explored in this
low-density limit.

Figure 6. First-, second- and third-order diagrams
contributing toC(1, 2) in the single-site approximation.

3.2. High density

A single-site theory consists [4] in an approximate summation of the diagrams contributing
to C(1, 2): only single-site diagrams are retained, i.e. the class of diagrams with a one-to-
one correspondence between sites and stages in the path. Moreover the structural connectors
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gs(1, 2, . . . , s) are approximated by the Kirkwood expansion [25]

gs(1, 2, . . . , s) =
s−1∏
i=1

s∏
j=1+1

[h(ij) + 1] (48)

where the direct short-range connector ish(ij) = g2(ij) − 1. A generics-site diagram
contributing toC(1, 2) consists of a simples-point chain together with a sufficient number
of h-connectors to render the diagram irreducible. First-, second- and third-order diagrams
contributing to C(1, 2) are shown in figure 6. A single-site theory is expected to be
quite reliable at high density; however, it is not an exactly soluble theory and further
approximations are required in order to close the OZ equation (7).

Figure 7. Some typical single-site double-chain diagrams contributing toG(2)(z, 12; z′, 34).
The meaning of the notation is the same as in figure 6.

For a generic single-site theory, after renormalization, all of the retained diagrams for
H(1, 2) are open-chain diagrams, with each bondV (i, j) occurring only once. Thus in such
a case the functional derivative in equation (36) is trivial. In terms of diagrams it consists
in deleting aV -bond inside each open-chain diagram contributing toH , in any possible
position, thus yielding a series of double-chain diagrams for the two-body function. Some
typical single-site diagrams contributing to the two-body function are reported in figure 7,
and consist of a double chain of [V (i, j)g2(ij)]-bonds. Now for each chain a one-to-one
correspondence holds between sites touched and chain points. A factorρ is associated
with any internal site, a factorG(z) for any point of the first chain, and a factorG(z′) for
any point of the second chain. Both of the chains must be free of one-articulation points.
Additional connectors come from the expansion (48) of the structural distribution function
gs(1, 2, . . . , s) in terms of the short-rangedh(ij). These connect sites belonging to the
same chain to sites belonging to different chains. All of the centre-of-mass position vectors
Ri for the internal sites are integrated over. As shown in figure 7, the expansion ofG(2)

contains both diagonal and off-diagonal contributions. In principle the chains could touch
each other at some sites, as shown in the last diagram of figure 7; however, such diagrams
have at least a bridge point and do not contribute toḠ(2). As already discussed, in the
variational derivative of equation (36) the functionG(z) may be regarded as a constant,
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since its contribution to the derivative would give a sum of terms with at least a bridge
point. For any single-site theory, regardingG(z) as a constant, the functional derivative of
H always yields two disjoint open chains, since all of the single-site diagrams forH are
open-chain diagrams.

The simplest single-site approximation was proposed by Matsubara and Toyozawa [9]
(MT) in their calculation of the conductivity for impurity band semiconductors. It consists
in neglecting any structural deviation from the perfectly random system by imposing

gs(1, 2, . . . , s) = 1 (49)

and in retaining only the first term in the diagram expansion ofC(1, 2), i.e. C(1, 2) ≈
V (1, 2), which is reasonable at high density. All of the single-site theories reduce to the
MT limit in the case of a perfectly random system (when equation (49) holds).

A generic single-site theory is basically defined by the OZ equation (7) implemented
via a closure relation. Fourier transforming equation (7) we formally solve it as

H(k) = C(k)

1 − ρG(z)C(k)
. (50)

In the limit of a perfectly random systemg2(R) = 1, and thenC(k) = C1(k) = V (k) and
H(k) reduces to the MT result [9]

HMT (k) = V (k)

1 − ρG(z)V (k)
. (51)

Inserting equation (36) in equation (17) we find

A(z, z) = [ρG(z)]2
∫

d(1) d(2) d(3) d(4)
δH(1, 4)

δV (2, 3)
W (4, 1) · W (2, 3) (52)

and in order to make some progress towards the evaluation of this integral we introduce the
Fourier transforms

W (R) =
∫

d3k

(2π)3
e−ik·RW (k) (53a)

0(k, q) =
∫

d(2) d(3) d(4) eik·R14eiq·R23
δH(1, 4)

δV (2, 3)
. (53b)

Then considering that

0(k, q) =
∫

d(2) d(3) eiq·R23
δH(k)

δV (2, 3)
= (2π)3 δH(k)

δV (q)
(54)

and substituting in equation (52) we obtain

A(z, z) = [ρG(z)]2
∫

d3k d3q

(2π)3

[
dV (k)

dk

dV (q)

dq

]
δH(k)

δV (q)
. (55)

Inserting equation (50) in equation (54), the two-body function0 follows as

0(k, q) = (2π)3

[1 − ρG(z)C(k)]2

δC(k)

δV (q)
(56)

and finally equation (55) reads

A(z, z) = [ρG(z)]2
∫

d3k d3q

(2π)3

δC(k)/δV (q)

[1 − ρG(z)C(k)]2

[
dV (k)

dk

dV (q)

dq

]
. (57)

In the MT limit δC(k)/δV (q) = δ3(k − q) and we recover the known expression [9]

A(z, z) = ρ2
∫

d3k

(2π)3

[
G(z)

1 − ρG(z)V (k)

]2 ∣∣∣∣dV (k)

dk

∣∣∣∣2

. (58)
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We observe that the term in square brackets can be written as [G(z)+ρG(z)2HMT (k)] which
is the Fourier transform of a generalized one-body Green function [G(z) δ3(R)+ρG(z, R)].
Then in the MT limit the averaged two-body Green function factorizes into the product of
two one-body functions, and this approximation is consistent with the approximations made
for the evaluation of the one-body function [17]. In the language of diagrams, since all of
the connectorsh(ij) = g2(ij) − 1 = 0, the chains are disconnected in all of the diagrams
retained, and the two-body function factorizes. As shown by Itoh and Watabe [17] this
result is exact, due to the vanishing contribution of the vertex corrections, even in the
Ishida–Yonezawa approximation [26]. The same conclusion is achieved in the coherent-
potential approximation for the case of diagonal disorder [27]. However, this means that
such theories furnish a trivial answer to the conductivity problem. For instance it is well
known that the DOS and the averaged one-body Green function are continuous across the
mobility edge. In principleG(2) contains information on the extent of the states, while the
one-body function loses such information in the averaging process. The presence of the
functional derivative in equation (57) ensures that in general even for a single-site theory,
which does not contain any localization effect,G(2) contains more information than the
one-body function, provided that non-trivial approximations are adopted for the structural
properties. In other words the approximation of factorizing the two-body function is not
always consistent with a single-site theory, and this is the case for the SSCA/EMA, as we
will see in the next section.

4. The SSCA/EMA and the ladder expansion

In our knowledge, the best single-site theory which can be exactly solved is the SSCA,
originally suggested by Wertheim [15] in the context of classical dielectric theory, and then
developed by Winn and Logan [6] who showed its equivalence to the EMA of Roth [11–
14] and—for a particular choice of the pair distribution functiong2—to the mean-spherical
approximation of liquid-state theory [28]. The SSCA consists [6] in neglecting all of the
diagrams with crossingh-connectors (for instance the fourth and fifth diagrams contributing
to C3 in figure 6). As shown by Winn and Logan [6], the SSCA is equivalent to the
following closure relation:

g2(1, 2)C(1, 2) = g2(1, 2)V (1, 2) + h(1, 2)H(1, 2) (59)

which allows for a solution of the OZ equation (7).G(z) is then self-consistently determined
through equation (6). This approximation is somewhat arbitrary but it allows for a soluble
theory which is analytical for some choices of the functionsV (ij), g2(ij), and includes
important structural corrections that are neglected in other single-site theories. Moreover
the SSCA reproduces the results of numerical simulations remarkably well [7].

If g2(R) is approximated by a simple step function

g2(R) = θ(R − a) (60)

then the SSCA/EMA is formally equivalent to the mean-spherical approximation of liquid-
state theory. This problem has well known solutions for some classes ofV (R)-functions.

The basis for a systematic study of the transport properties at the EMA level [29] was
given by the independent work of Roth and Singh [20] and Itohet al [18]. Such results are
easily recovered by the functional method developed in the previous section: the functional
derivative appearing in equation (57) can be evaluated by use of the SSCA closure condition
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(59) for the OZ equation. Taking the Fourier transform of the closure condition (59):∫
g2(q − k)C(k) d3k =

∫
g2(q − k)V (k) d3k +

∫
h(q − k)H(k) d3k (61)

and differentiating with respect toδV , and then observing thatg2(k) = (2π)3 δ3(k)+h(k),
we obtain with the aid of equation (56)

0(k, q) = g2(k − q) +
∫

d3p

(2π)3
g2(k − p)

[
1 − γ 2(p)

]
0(p, q) (62)

whereG(z)/γ (k) = G(z)/[1−ρG(z)C(k)] = [G(z)+ρG(z)2H(k)] is the Fourier transform
of a generalized averaged one-body Green function(G(z) δ3(R)+ρG(z, R)). The solution
of this integral equation is a two-body function0 which turns out to be consistent with the
one-body function evaluated at the SSCA/EMA level. The function0 is formally equivalent
to the propagator of a particle moving ink-space in the presence of the potential 1−γ 2(k),
and with a free propagatorg2(k). Wheng2(R) is approximated by the step function (60)
then [g2(R)]2 = g2(R) andg2(k) satisfies∫

g2(k − q)g2(q − p) d3q = g2(k − p) (63)

which is typical of a free propagator. A simplified version of equation (62) could be written
by approximating the pair functiong2 with its random-limit valueg2(k) ≈ (2π)3 δ3(k);
the equation can be solved giving0(k, q) = δ3(k − q)/γ 2(k) which basically is again the
square of the one-body function. We should have predicted this result by observing that in
such an approximation we are neglecting all of theh(i, j)-factors connecting one chain to
the other, while we are retaining their contributions inside each chain. The averaged two-
body function factorizes but this is not a consistent approximation, since different strategies
have been adopted for the calculation of one-body and two-body functions.

The calculation of the conductivity follows from the solution of the integral equation
(62) for the two-body function0. The physical content of this equation is readily understood
by iterating in order to obtain a perturbative expansion in terms of the connectorsh. We
introduce the following operatorial notation:̂0 = 0(k, q), ĝ = g2(k − q), ĥ = h(k − q)

and Î = (2π)3 δ3(k − q). The operatorial product is understood as

0̂f ĝ =
∫

d3p

(2π)3
0(k · p)f ( p)g2( p − q) (64)

for any generic functionf ( p). With the substitution̂g = Î + ĥ equation (62) becomes

0̂ = Î + ĥ + (1 − γ 2)0̂ + ĥ(1 − γ 2)0̂. (65)

This can be rearranged as

0̂ = 1

γ 2
Î + 1

γ 2
ĥ + 1

γ 2
ĥ(1 − γ 2)0̂. (66)

Then iterating,

0̂ = 1

γ 2
Î + 1

γ 2
ĥ + 1

γ 2
ĥ(1 − γ 2)

1

γ 2
+ 1

γ 2
ĥ(1 − γ 2)

1

γ 2
ĥ

+ 1

γ 2
ĥ(1 − γ 2)

1

γ 2
ĥ(1 − γ 2)

1

γ 2
+ · · · (67)
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and after some cancellation we finally obtain

0̂ = 1

γ 2
Î + 1

γ 2
ĥ

1

γ 2
+ 1

γ 2
ĥ

[
1

γ 2
− 1

]
ĥ

1

γ 2
+ 1

γ 2
ĥ

[
1

γ 2
− 1

]
ĥ

[
1

γ 2
− 1

]
ĥ

1

γ 2
+ · · · .

(68)

Alternatively this expansion can be rewritten as

0̂ = 1

γ 2
Î + 1

γ 2
T̂

1

γ 2
(69)

whereT̂ is given by

T̂ = ĥ + ĥ

[
1

γ 2
− 1

]
ĥ + ĥ

[
1

γ 2
− 1

]
ĥ

[
1

γ 2
− 1

]
ĥ + · · · (70)

and can be formally summed as

T̂ = ĥ + ĥ

[
1

γ 2
− 1

]
T̂ . (71)

Figure 8. Diagrammatic representations of some of the equations of the text.

These expansions have a simple graphical interpretation in terms ofk-space double-
chain diagrams. In figure 8 the propagator

1/γ (k) = 1 + ρG(z)H(k) (72)

is represented by a double line. A simple line represents the renormalized transfer element
ρG(z)H(k), while the short-ranged connectorsh are represented as dotted lines. Any
internal variable is integrated over and a factor 1/(2π)3 must be added for any integration.
Equations (69), (71) and (72) are displayed in figure 8. As shown in the same figure
the term ĥ(1/γ 2)ĥ contains the spurious addendumh2 which is correctly cancelled to
any order by the(−1) correction appearing in the(1/γ 2 − 1) factors. As shown in
figure 9 the series (68) for0(k, q) has the shape of a ladder expansion (apart from the
(−1) corrections), with two chains joined by all of the possibleh-connectors. Some first-
order contributions are shown explicitly in terms of the transfer elementρG(z)H(k) (a
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Figure 9. A diagrammatic representation of the ladder expansion (68). Some first-order
contributions are shown explicitly in terms of the renormalized transfer elementρG(z)H(k)

(single lines). The meaning of the notation is the same as in figure 8.

single line). We observe that this is a renormalized transfer element which sums all of
the contributions from intra-chainh-connectors at the SSCA/EMA level. Consistently with
such an approximation we are neglecting all of the double-chain diagrams with crossing
h-connectors. The approximation of factorizing the averaged two-body Green function as
the product of two one-body functions is equivalent to retaining only the first diagram of
the expansion (68), or alternatively to settingT̂ = 0 in equation (69). We stress once more
that such broken average (BA) approximation is not consistent with the SSCA since all
of the chain-to-chainh-connectors are explicitly neglected while retaining the intra-chain
ones. However, the BA approximation becomes exact in the MT limit since then all of the
h-connectors vanish, but we expect that the contribution coming from higher-order terms
would become more and more important as the density increases, in a system made of real
impenetrable ions. This is illustrated in the next section were some numerical calculations
are presented in the random-hard-sphere approximation.

This diagrammatic analysis of the ladder expansion is of some utility for generalizing
equation (55) to the case ofA(z, z′) with z 6= z′. In fact the calculation of the conductivity
requires the knowledge of the functionA for conjugated values of the variables. By
inspection of the diagrams in figure 9 we observe that such a generalization is immediately
obtained by substitutingz′ for z in all of the factors associated with one of the two chains.
Since thez-dependence is implicit in the dependence onG(z) andγ (k), we only need to
replaceγ 2 with γ γ ′ whereγ ′(k) = 1−ρG(z′)C ′(k) andC ′(k) is the irreducibleC-function
evaluated atz = z′. The integral equation (62) then reads

0(k, q) = g2(k − p) +
∫

d3p

(2π)3
g2(k − p)

[
1 − γ (p)γ ′(p)

]
0(p, q) (73)

and theA(z, z′)-function is given by

A(z, z′) = ρ2G(z)G(z′)
∫

d3k d3q

(2π)6

[
dV (k)

dk

dV (q)

dq

]
0(k, q). (74)

This is all that we need for the evaluation of the conductivity through equation (13) and
(14), provided that we are able to solve the integral equation (73).

For successive numerical work on the conductivity it would be convenient to rearrange
the problem in order to obtain a one-dimensional integral equation. This can be easily done
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for a generic isotropic system: let us introduce the vectorial function

χ(k) =
∫

d3q

(2π)3
0(k, q)

dV (q)

dq

q

q
. (75)

In terms ofχ the functionA(z, z′) is written as

A(z, z′) = ρ2G(z)G(z′)
∫

d3k

(2π)3

dV (k)

dk

k

k
· χ(k). (76)

Since we are assuming that the system is isotropic, rotational invariance ensures that
0(k, q) ≡ 0(k, q,k · q). The integration in the definition (75) ofχ can be carried out
in a (qx, qy, qz)-frame with theqz-axis parallel to thek-vector. In such a frame thex, y-
components ofχ vanish identically for symmetry reasons and thus the vectorial functionχ
is parallel to thek-vector:

k

k
· χ(k) = |χ(k)| = χ(k). (77)

Moreover, since the angles are integrated over in equation (75), the scalar functionχ(k)

depends only on the modulusk and equation (76) becomes

A(z, z′) = ρ2G(z)G(z′)
1

2π2

∫ +∞

0
k2 dk

dV (k)

dk
χ(k). (78)

Now let us multiply all of the terms in the integral equation (73) by the factor

1

(2π)3

k · q

kq

dV (q)

dq

and integrate over the variableq:

χ(k) =
∫

d3q

(2π)3

k · q

kq

dV (q)

dq
g2(k − q)

+
∫

d3p

(2π)3
g2(k − p)

[
1 − γ (p)γ ′(p)

] k

k
· χ(p). (79)

The vectorχ(p) is obviously parallel top, and we can writeχ(p) = ( p/p)χ(p), so
equation (79) becomes

ψ(k) = φ(k) +
∫ +∞

0

p2 dp

(2π)2
f (k, p)

[
1

γ (p)γ ′(p)
− 1

]
ψ(p) (80)

whereψ(k) = χ(k)γ (k)γ ′(k) and the functionf (k, p) is defined as

f (k, p) =
∫ +1

−1
d

(
k · p

kp

)
h(k − p)

k · p

kp
. (81)

The free termφ(k) follows from the first integral of equation (79):

φ(k) = k

k

∫
d3q

(2π)3

dV (q)

dq
g2(k − q) = k

k

d

dk

∫
d3R

[
V (R)g2(R)

]
e−ik·R = d

dk
U(k)

(82)

whereU(k) is the Fourier transform of the productV (R)g2(R). We notice that equation (80)
is equivalent to the integral equation proposed by Itohet al [18] for the vertex function in
the EMA. Such an equation can easily be solved numerically if the analytical form of the
one-body Green function is known together with the short-ranged connectorh and the pair
distribution functiong2.
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The great advantage of using an SSCA formalism consists in the ‘privilege’ of being
able to make use of some analogies with liquid-state theory. Equation (7) is analogous to
the OZ equation [4] and exact solutions are available for some classes of closure conditions;
then the existence of an analytically tractable theory for the one-body Green function renders
the integral equation (80) for the conductivity easily solvable numerically, even for a real
high-density liquid with non-trivial structural properties.

5. Numerical results

In this section we present some numerical results at the SSCA/EMA level in the random-
hard-sphere approximation, for a Yukawa transfer-matrix element. In this approximation the
pair distribution functiong2(R) is approximated by the step function (60), as is reasonable
for small values of the packing fractionη = (4π/3)ρ(a/2)3. This choice is not reliable for
large values of the packing fraction since the structure factor goes negative forη > 0.125.
Numerical simulations have shown [7] that, even for unphysical values ofη, this random-
hard-sphere approximation produces a DOS which is basically correct except for for the
states close to the upper band edge which are more sensitive to the local structure. Further
problems arise in the calculation of the conductivity which is strongly related to the
behaviour of the off-diagonal Green function, since such behaviour becomes unphysical
for η larger then 0.125. We notice that the occurrence of such difficulties is a sign of a
correct sensitivity to the structural properties, and that the SSCA/EMA by itself would be
very accurate if theg2(R)-function were exact. On the other hand the random-hard-sphere
approximation of equation (60) is correct in the low-density limit and provides an analytical
solution which is reliable for an intermediate range of densities.

With such a choice for the pair distribution function, the problem is formally equivalent
[6] to solving the OZ equation of the mean-spherical approximation for a simple hard-sphere
fluid. An analytical solution of this problem is available for a wide class ofV (R)-functions,
and the one-body Green function has been explicitly evaluated by Winn and Logan [6] in
the case of a Yukawa transfer-matrix element:

V (R) = −V0

R
e−αR (83)

which is appropriate for describing important physical processes such as electronic transport
in liquid metals or in doped semiconductors. In the following part of the paper we will
make use of natural units, taking 1/α andαV0 respectively as the length and energy units.
The conductivity is reported in adimensional form, with units ofe2α/h̄.

The evaluation of the free termφ(k), in the integral equation (80), is straightforward,
and follows from the insertion of the Yukawa transfer-matrix element (83) in equation (82):

φ(k) = 4πe−a

(1 + k2)

[(
3 + a(1 + k2) + 1

k2

)
sin(ka) +

(
(2 − a)k − a

k

)
cos(ka)

]
. (84)

The Fourier transform of the short-ranged connectorh is readily obtained from equation (60):

h(k) = −4π

k3
[sin(ka) − (ka) cos(ka)] (85)

and the functionf (k, p) follows via the simple integration of (81):

f (k, p) = 4πa3

(ka)(pa)

[
2

sin(ka)

ka

sin(pa)

pa
+ −sin(ka + pa)

ka + pa
− sin(ka − pa)

ka − pa

]
. (86)
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The irreducible functionC(R) must satisfy the OZ equation (7) with the SSCA/EMA closure
condition (59) which becomes, for a random-hard-sphere pair function (60),{

C(R) = V (R) if R > a

H(R) = 0 otherwise.
(87)

This problem has been discussed by several authors [30–33], and the solution is the simple
expression

C(R) =
 −S

1 − e−R

R
+ S2 cosh(R) − 1

2R
if R < a

V (R) if R > a

(88)

where the self-energyS = S(z), as defined in equation (9), satisfies the quartic equations

u2
0(S) = π

2
ρG(z)

[
S(z) + 1

2
S(z)2

]
(89a)

u0(S) = πρG(z)

[
S(1 − e−a) − S2 cosh(a) − 1

2
− e−a

]
. (89b)

Of course the averaged Green functionG(z) must be self-consistently determined by use
of equation (10).

Finally, the Fourier transformC(k) is easily recovered from equation (88):

ρG(z)C(k) = 4

[
2u2

0
cos(ka) − 1

k2(1 + k2)
+ u0

cos(ka)

1 + k2
−

(
∂u0

∂a

)
sin(ka)

k(1 + k2)

]
(90)

which thus completely defines the kernel of the integral equation (80).
The one-body off-diagonal Green functionG(R) follows from its Fourier transform

G2(z)C(k)/γ (k). We observe that the long-range behaviour ofG(R) is determined by the
presence of a complex pole in the Fourier transform fork = k0(E)+i/λ(E) with z = E+i0+.
For large values ofR the functionG(R) behaves as exp(ik0R) exp(−R/λ)/R and thenλ is
a sort ofcoherence length. λ has an important role in the conductivity problem, and must
be finite for physical reasons since otherwise forλ → ∞ the functionG(R) would lose
its exponentially decreasing factor. In this random-hard-sphere approximation, whenever
the packing fractionη exceeds the value 0.125, the structure factor goes negative, and for
larger values ofη the pole of 1/γ (k) crosses the real axis at a critical value ofE = Ec

in the low-energy tail of the band. ForE = Ec, we haveλ → ∞ and the corresponding
G(R)-function assumes an unphysical behaviour. Both the self-energy and the averaged
diagonal Green functionG+(E) are continuous functions atE = Ec, since the integral in
equation (9) is still convergent for the presence of the transfer-matrix elementV (R). As a
consequence the calculation of an averaged DOS is not affected by any inconsistency even
for large values of the packing fraction. We cannot say the same for the conductivity: in the
BA approximation we obtain a divergent result due to the presence of a second-order pole
in equation (74); at the SSCA/EMA level the sum of all of the divergent terms in the ladder
expansion (68) gives rise to a finite answer for the conductivity, but still a discontinuous
jump of the first derivative occurs atE = Ec. We expect that such inconsistencies will
emerge only in the low-energy tail of the band because these deep states are more affected
by an incorrect evaluation of the short-range structural properties. Even when the packing
fraction exceeds 0.125, this approximation is still reliable forE � Ec.

In figures 10 and 11 we report the conductivity versus the occupation numberNocc

of the band:Nocc = y/2 wherey is the filling fractiony = Ne/N as defined in section
2. The results are compared to the simple BA approximation which coincides with the
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Figure 10. The conductivityσ versus the occupation
numberNocc, at a fixed densityρ = 1.0, and for: (A)
a = 0.05 (η = 6 × 10−5); (B) a = 0.25 (η = 0.008);
(C) a = 0.5 (η = 0.065); (D) a = 0.75 (η = 0.22).
The broken lines are the corresponding results in the
BA approximation.

Figure 11. The conductivityσ versus the occupation
numberNocc, for a fixed hard-core radiusa = 0.5, and
for: (A) ρ = 0.5 (η = 0.033); (B)ρ = 1.0 (η = 0.065);
(C) ρ = 1.5 (η = 0.1); (D) ρ = 2.0 (η = 0.13). The
broken lines are the corresponding results in the BA
approximation.

SSCA/EMA in the MT limit (a → 0) or for a small enough density to render the packing
fraction negligible. The temperatureT is fixed atT = 0, but any generalization toT 6= 0
is straightforward, and follows from the simple integration (13) over the proper Fermi
distribution. In figure 10 the conductivity is shown for several values of the hard-core
radiusa, at a fixed densityρ = 1. The lower curve, fora = 0.05 and a corresponding
packing fractionη = 6 × 10−5, is basically the MT limit of a perfectly random system.
We observe that the inclusion of a hard core in the pair distribution function produces
strong changes in the conductivity. This large increase of the conductivity witha could be
expected, since the existence of a hard core reduces the averaged value of the transfer-matrix
element, thus giving rise to a narrower band and to a larger DOS. We still observe a large
mobility in the low-energy tail compared to the small mobility of the upper band edge. In
figure 11 the conductivity is reported for several values of the densityρ, at a fixed value
of the hard-core radiusa = 0.5. The BA approximation is excellent in the lower half of
the band, say forNocc < 0.5, and for moderate values of the density, since the low-energy
mobility peak becomes divergent forη > 0.125. In the upper half of the band the presence
of the hard cores gives rise to a very large DOS, which must be compensated by a consistent
sum of terms contributing to the two-body Green function. In the BA approximation such
a compensation cannot take place since the presence of the hard cores is partially neglected
in the evaluation of the two-body Green function. As a consequence the conductivity is
overestimated for the high-energy states. As shown in figures 10 and 11 the consistent sum
of all of the diagrams at the SSCA/EMA level removes the anomalous high-energy mobility
peak, in agreement with the numerical calculations of Itoh and Watabe [34]. It is remarkable
that, even in this simple structural approximation, the internal consistency of the theory plays
an important role for a correct evaluation of the transport properties. We observe that even
the BA approximation contains some hard-core corrections, but these are not consistently
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described and the lack of consistency could give rise to uncontrollable errors. As shown
in figures 10 and 11, even in the hard-core approximation the internal consistency of the
theory—as guaranteed by equation (36)—cannot be ruled out and, especially in the high-
density domain, any further improvement in the description of the structural properties can
be achieved only through a fully consistent theory.
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